'Conductive concrete' shields electronics from EMP attack

An attack via a burst of electromagnetic energy could cripple vital electronic systems, threatening national security and critical infrastructure, such as power grids and data centers.

Nebraska engineers Christopher Tuan and Lim Nguyen have developed a cost-effective concrete that shields against intense pulses of electromagnetic energy, or EMP. Electronics inside structures built or coated with their shielding concrete are protected from EMP.

The technology is ready for commercialization, and the University of Nebraska-Lincoln has signed an agreement to license this shielding technology to American Business Continuity Group LLC, a developer of disaster-resistant structures.

Electromagnetic energy is everywhere. It travels in waves and spans a wide spectrum, from sunlight, radio waves and microwaves to X-rays and gamma rays. But a burst of electromagnetic waves caused by a high-altitude nuclear explosion or an EMP device could induce electric current and voltage surges that cause widespread electronic failures.

"EMP is very lethal to electronic equipment," said Tuan, professor of civil engineering. "We found a key ingredient that dissipates wave energy. This technology offers a lot of advantages so the construction industry is very interested."

EMP-shielding concrete stemmed from Tuan and Nguyen's partnership to study concrete that conducts electricity. They first developed their patented conductive concrete to melt snow and ice from surfaces, such as roadways and bridges. They also recognized and confirmed it has another important property - the ability to block electromagnetic energy.


No comments:

Post a Comment