Beyond brain scanning: Simultaneous high-resolution 3D neural imaging and photostimulation

(Medical Xpress) -- Neuroanatomy and neurophysiology are inherently three-dimensional domains. Neuronal cell body projections – axons and dendrites – can interconnect large numbers of neurons distributed over large cortical distances. Since the brain processes sensory, somatic, conceptual, and other classes of information in this 3D structural space, the need to (1) image neural structures and (2) stimulate and record neural signals are essential to understanding the relationship between brain structure and function. While 3D imaging and 3D photostimulation using scanning or parallel excitation methods have been used, they have not previously been combined into an optical system that can successfully decouple the corresponding optical planes when using a single lens – a shortcoming that has limited investigators to small neural areas. Recently, however, scientists at Université Paris Descartes have combined digital single photon holographic stimulation with remote-focusing-based epifluorescent functional imaging to overcome these limitations.

Researchers Francesca Anselmi and Cathie Ventalon in the Emiliani Wavefront-Engineering Microscopy Group led by Dr. Valentina Emiliani, along with Aurélien Bègue and David Ogden, work at the intersection of physics and biology. As such, they encountered several challenges in designing and performing their experimental demonstration.

No comments:

Post a Comment